

RECOMMENDATION ENGINES

Bachelor in Data and Business Analytics BDBA SEP-2023 RE-DBA.3.M.A

Area Others

Number of sessions: 30 Academic year: 23-24 Degree course: THIRD Number of credits: 6.0 Semester: 1º

Category: COMPULSORY Language: English

Professor: ALVARO ROMERO MIRALLES

E-mail: aromerom@faculty.ie.edu

ALVARO ROMERO MIRALLES

Álvaro Romero is Data Science Technical Director in the group of Energy Predictive Analytics of Instituto de Ingeniería del Conocimiento (IIC). He holds a Master's Degree in Computer Engineering, a Master's Degree in ICT Research and Innovation in Computational Intelligence and an EMBA from IE. His thesis on prediction of electricity prices in Spain has been published in the International Journal of Interactive Multimedia and Artificial Intelligence. He graduated in Mathematics and Computer Engineering from Universidad Autónoma de Madrid. He has experience in fraud detection, predictive maintenance, optimization problems, forecasting of demand and renewable energy production, etc. He also collaborates as a professor in different Masters and Bachelors of Data Sciece, BI and Big Data in business schools such as MBIT School and ENAE Business School or IE.

aromerom@faculty.ie.edu

SUBJECT DESCRIPTION

Recommendation engines have changed a wide range of businesses by reducing costs and/or improving the user experience. With the variety of products, films, music that exist today cosumers would not have any chance to find the right products without the existance of search & recommendation engines.

This course introduces students to the concept of recommender systems, reviews several examples in detail, and leads students through non-personalized recommendation, content-based and collaborative filtering recommendations. In addition, students

will learn how to evaluate recommender systems using several families of metrics, including ones to measure prediction accuracy, rank accuracy, decision-support, and other factors such as diversity, product coverage, and serendipity.

LEARNING OBJECTIVES

In this course the student learns to handle, apply and evaluate search engines methods and technologies. The course provides an understanding of the theoretical foundations, as well as applied and methodological skills.

At the end of the course, students will obtain a solid grasp of the theoretical and practical application of popular supervised machine learning algorithms. Through Python or R coding students will be able to:

- Gather the appropiate data
- Build non-personalised recommenders
- Build filter-based recommenders
- Build content-based recommenders
- Standard evaluations on recommendation systems to aid in the decision making process.

TEACHING METHODOLOGY

IE University teaching method is defined by its collaborative, active, and applied nature. Students actively participate in the whole process to build their knowledge and sharpen their skills. Professor's main role is to lead and guide students to achieve the learning objectives of the course. This is done by engaging in a diverse range of teaching techniques and different types of learning activities such as the following:

Learning Activity	Weighting	Estimated time a student should dedicate to prepare for and participate in	
Lectures	26.67 %	40.0 hours	
Discussions	13.33 %	20.0 hours	
Exercises in class, Asynchronous sessions, Field Work	13.33 %	20.0 hours	
Group work	33.33 %	50.0 hours	
Individual studying	13.33 %	20.0 hours	
TOTAL	100.0 %	150.0 hours	

PROGRAM

SESSION 1 (LIVE IN-PERSON)

In this session we will review the course logistics and organization together with an introduction to recommender systems

SESSION 2 (LIVE IN-PERSON)

In this session we will hold a live discussion on how recommendation engines can improve almost any business by analysing Netflix case.

Practical Case: Netflix in 2011 (HBS 615007-PDF-ENG)

SESSION 3 (LIVE IN-PERSON)

Review of R programming & Discussion on what are the different uses of recommendation systems

SESSION 4 (LIVE IN-PERSON)

Review of R programming & Reading of "Great Digital Companies Build Great Recommendation Engines"

Article: Great Digital Companies Build Great Recommendation Engines (HBS H03SI8-PDF-ENG)

SESSION 5 (LIVE IN-PERSON)

Approaches for building a recommender system

SESSION 6 (LIVE IN-PERSON)

Gathering data for recommendation engines: what is the important data we need when building a recommender?

SESSION 7 (LIVE IN-PERSON)

Advanced topics on gathering data: ratings

SESSION 8 (LIVE IN-PERSON)

Coordinated discussion on how the big companies collect the necessary data.

Working with Recommenderlab

SESSION 9 (LIVE IN-PERSON)

Accuracy metrics for recommendation engines

SESSION 10 (LIVE IN-PERSON)

Practical exercises in class about metrics

SESSION 11 (LIVE IN-PERSON)

Presentation of individual work

SESSION 12 (LIVE IN-PERSON)

Presentation of individual work

SESSION 13 (LIVE IN-PERSON)

Further topics on metrics

SESSION 14 (LIVE IN-PERSON)

Offline evaluation vs online evaluation

SESSION 15 (LIVE IN-PERSON)

Theory on stereotype-based & demographic recommendations

SESSION 16 (LIVE IN-PERSON)

Building a non-personalized recommender

SESSION 17 (LIVE IN-PERSON)

Splitting the data & using the evaluation methods to evaluate your own recommender

SESSION 18 (LIVE IN-PERSON)

Building your own recommender

SESSION 19 (LIVE IN-PERSON)

Theory about collaborative filtering methods

SESSION 20 (LIVE IN-PERSON)

Factorization Methods

SESSION 21 (LIVE IN-PERSON)

Building a collaborative filtering recommender

SESSION 22 (LIVE IN-PERSON)

Building your own recommender

SESSION 23 (LIVE IN-PERSON)

Introduction to content based recommenders

SESSION 24 (LIVE IN-PERSON)

Building a content-based recommender

SESSION 25 (LIVE IN-PERSON)

Building your own recommender

SESSION 26 (LIVE IN-PERSON)

Work group presentation

SESSION 27 (LIVE IN-PERSON)

Work group presentation

SESSION 28 (LIVE IN-PERSON)

Advanced topics on recommender systems

SESSION 29 (LIVE IN-PERSON)

Revision session and class discussion

SESSION 30 (LIVE IN-PERSON)

Final exam

EVALUATION CRITERIA

	criteria	percentage	Learning Objectives	Comments	
	Final Exam	20 %			
	Individual Work	25 %			
	Workgroups	40 %			
	Class Participation	15 %			
RE-SIT / RE-TAKE POLICY					

BIBLIOGRAPHY

Recommended

- Suresh K. Gorakala, Michelle Usuelli. Building a Recommendation Engine. ISBN 9781783554492 (Digital)
- Aggarwal, C. C. Recommender Systems: The Textbook. Springer. ISBN 3319296574 (Digital)
- KIM FALK. Practical Recommender Systems. Manning. ISBN 9781617292705 (Digital)

BEHAVIOR RULES

Please, check the University's Code of Conduct here. The Program Director may provide further indications.

ATTENDANCE POLICY

Please, check the University's Attendance Policy <u>here</u>. The Program Director may provide further indications.

ETHICAL POLICY

Please, check the University's Ethics Code <u>here</u>. The Program Director may provide further indications.

