DIGITAL TOOLS AND OPERATIONS

IE University
Professor: OSCAR HERRERO HERRANZ
E-mail: oherrero@faculty.ie.edu

Academic year: 22-23
Degree course: FIRST
Semester: Annual
Category: BASIC
Number of credits: 6.0
Language: English

PREREQUISITES
Students are required to have:

- Their own personal laptop (less than 4y old) with a classical 3 button mouse
- A thorough understanding of their own operating system (Windows is recommended)

Also it is suggested to assist any software workshop that IE could offer for first year students.

SUBJECT DESCRIPTION
Digital Tools and Operations is one of the graphic courses offered during the first year of the degree, and serves as the basis for Architectural Geometry 01, which will take place during the second semester.

The course seeks to provide the students with a clear understanding of the fundamentals of digital representation and the relationship between the digital model and the built environment. It is not designed as a software tutorial: additional software workshops will be organized outside of class. The main objective of the course is to provide a critical understanding of digital tools and their potential, in order to represent and model architecture and architectural elements.

The course will be structured around the following content: 1. Digital technologies applied to drawing and representation, 2. Digital technologies applied to 2D and 3D modeling, 3. Digital technologies applied to production and delivery.

Digital Tools and Operations has three main goals:

1. The ability to conceive and represent the visual attributes of objects. Students will be competent in understanding, analyzing and producing legible and precise drawings of objects and spaces that follow architectural drawing standards through the use of Computer Aided Design.
2. To be able to work with proportion, scale and digital drawing techniques
3. To understand and work with different systems and methods of representation, and to evaluate their usefulness in different architectural design contexts.

OBJECTIVES AND SKILLS
2.1 Basic and General Objectives (per Ministerial Decree EDU/2075/2010, 29 of July; and the official accreditation request for the Bachelor in Architectural Studies, July 2015.)

- CB1: Students have demonstrated knowledge and an understanding of a given area of study, building upon the foundation of secondary education, supported by advanced texts, and including aspects that engage the latest advances in their area of study.
- CB2: Students know how to apply their knowledge professionally to their work or vocation and possess the competencies that are often demonstrated through elaboration and defense of arguments and the resolution of problems within their area of study.
- CB3: Students can gather and interpret relevant facts (usually within their area of study) in order to make judgments that include reflection on relevant social, scientific, and ethical topics.
- CB4: Students can transmit information, ideas, problems, and solutions to both specialized and non-specialized audiences.
- CB5: Students have developed the necessary learning skills to continue their studies with a high degree of autonomy.
- CG2: Knowledge of the role of the fine arts as a factor that can influence the quality of architectural creation.
- CG7: An understanding of the relationship between people and buildings, and between buildings and their contexts, as well as the need to relate buildings and adjacent spaces to needs and to the human scale.

2.2 Specific Competencies Module: Preparatory Subject: Digital Studies

- CE2: Ability to conceive of and represent the visual attributes of objects and to demonstrate command of proportion and drawing techniques, both manual and digital.

2.3 Transverse Competencies of the University

- CT4: Use disciplinary knowledge to analyze and evaluate current situations.
- CT5: Integrate oneself into interdisciplinary and multicultural teams to achieve common goals in a context of diversity.

2.4 Learning outcomes

Digital Tools and Operations is the only subject in its area of study. Students have to be able to demonstrate:

1. Ability to conceive and represent the visual attributes of objects.
2. Command of proportion and drawing techniques, both manual and digital.

METHODOLOGY

3.1 Teaching methodology

The course is predominantly workshop based, with a series of short lectures given by the professor at the beginning of each block or session or even sent to the student to prepare it before the session using videos or short tutorials. The aim of the course is to develop an understanding of architectural geometry and representation through the use of Computer Aided Design from a critical standpoint; it is not intended to be a software tutorial. Initial training on CAD tools will be provided at the beginning of the semester and additional workshops will be carried out outside class time.

Short-term assignments will be developed in class, to apply the theory learned in the preceding lecture. During this time the professor will make corrections and answer questions both individually and to the whole group.

28th September 2022
There will be a long-term assignment that will be explained during the first sessions, and is to be carried out throughout the course. At the beginning of each block a new segment will be added to this assignment, that will be completed and handed in at the end of each block. At the end of the course all parts of this long-term assignment will be corrected and improved upon for the final submission. This long-term assignment and its different segments are meant to be started and planned out in class, and finished predominantly at home.

3.2 Student learning method/distribution of ECTS load:
Digital Tools and Operations is a 6 ECTS subject, distributed in 40 IE sessions of 80+10 minutes, or 60 hours of class. This amount of time is fairly short for the development of the scheduled contents so the students will be asked to continue working at home. Class time will be spent on theory, guided work, and discussions. This scenario will require a commitment from the students to work hard inside and outside school.

3.3 Training activities:
- AF1: Workshops and laboratories - 40 hours
- AF2: Lectures - 10 hours
- AF3: Discussions and seminars - 10 hours
- AF10: Submission preparation - 90 hours

<table>
<thead>
<tr>
<th>Teaching methodology</th>
<th>Weighting</th>
<th>Estimated time a student should dedicate to prepare for and participate in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>6.67 %</td>
<td>10 hours</td>
</tr>
<tr>
<td>Discussions</td>
<td>6.67 %</td>
<td>10 hours</td>
</tr>
<tr>
<td>Exercises</td>
<td>26.67 %</td>
<td>40 hours</td>
</tr>
<tr>
<td>Group work</td>
<td>0.0 %</td>
<td>0 hours</td>
</tr>
<tr>
<td>Other individual studying</td>
<td>60.0 %</td>
<td>90 hours</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.0 %</td>
<td>150 hours</td>
</tr>
</tbody>
</table>

PROGRAM

SECTIONS 1 - 2 (LIVE IN-PERSON)
G1. INTRODUCTION TO ORTHOGRAPHIC PROJECTIONS AND COMPUTER-AIDED DESIGN
Historical Overview. Types of projection systems. Orthographic projections
Delivery method: Synchronous hybrid

SECTIONS 3 - 4 (LIVE IN-PERSON)
G2. INTRODUCTION TO CASE STUDY ANALYSIS
Elements of Architectural Representation 1
Delivery method: Asynchronous
Orthographic projections. Lineweights and legibility. Introduction to scale and architectural standards
Delivery method: Synchronous hybrid

SECTIONS 5 - 6 (LIVE IN-PERSON)

3
28th September 2022
Orthographic projections. Lineweights and legibility. Introduction to scale and architectural standards
Delivery method: Synchronous hybrid
Elements of Architectural representation 2
Delivery method: Asynchronous

SESSIONS 7 - 8 (LIVE IN-PERSON)
Layer-based drawing. Plan and elevation analysis
Delivery method: Synchronous online

SESSIONS 9 - 10 (LIVE IN-PERSON)
Elevations and drawing correlations
Delivery method: Synchronous hybrid

SESSIONS 11 - 12 (LIVE IN-PERSON)
Elements of Architectural Representation 3
Delivery method: Asynchronous
G3. SECTIONED ORTHOGRAPHIC PROJECTIONS
Introduction to sections and section legibility
Delivery method: Synchronous hybrid

SESSIONS 13 - 14 (LIVE IN-PERSON)
G3. SECTIONED ORTHOGRAPHIC PROJECTIONS
Introduction to sections and section legibility
Delivery method: Synchronous hybrid
Case Study presentation - Assignment A
Delivery method: Synchronous online

SESSIONS 15 - 16 (LIVE IN-PERSON)
Case Study presentation - Assignment A
Delivery method: Synchronous online
G4. AXONOMETRIC SYSTEMS
Introduction to axonometric projections. Isometric
Delivery method: Synchronous hybrid

SESSIONS 17 - 18 (LIVE IN-PERSON)
G4. AXONOMETRIC SYSTEMS
Introduction to axonometric projections. Isometric
Delivery method: Synchronous hybrid
Introduction to oblique axonometric projections. Plan oblique and elevation oblique
Delivery method: Synchronous hybrid
SESSIONS 19 - 20 (LIVE IN-PERSON)
Introduction to oblique axonometric projections. Plan oblique and elevation oblique
Delivery method: Synchronous hybrid
Elements of Architectural Representation 4
Delivery method: Asynchronous

SESSIONS 21 - 22 (LIVE IN-PERSON)
Vertical circulation. Orthographic and Axonometric projections
Delivery method: Synchronous hybrid

SESSIONS 23 - 24 (LIVE IN-PERSON)
Axonometric representation and architectural standards: layers and materiality
Delivery method: Synchronous hybrid

SESSIONS 25 - 26 (LIVE IN-PERSON)
Case Study presentation - Assignment B
Delivery Method: Synchronous Online

SESSIONS 27 - 28 (LIVE IN-PERSON)
G5. SECTIONED AXONOMETRIC DRAWINGS
Elements of Architectural Representation 5
Delivery Method: Asynchronous
Introduction to sectioned axonometric projections
Delivery method: Synchronous hybrid

SESSIONS 29 - 30 (LIVE IN-PERSON)
Introduction to sectioned axonometric projections
Delivery method: Synchronous hybrid
Introduction to 3d modeling and the 3-dimensional sectioned cut
Delivery method: Synchronous hybrid

SESSIONS 31 - 32 (LIVE IN-PERSON)
Introduction to 3d modeling and the 3-dimensional sectioned cut
Delivery method: Synchronous hybrid
Sectioned axonometric representation standards
Delivery method: Synchronous Online

SESSIONS 33 - 34 (LIVE IN-PERSON)
Sectioned axonometric representation standards
Delivery method: Synchronous Online

28th September 2022
G6. ADVANCED 2D REPRESENTATION
Elements of Architectural Representation 6
Delivery method: Asynchronous

SESSIONS 35 - 36 (LIVE IN-PERSON)
Introduction to site plans and site sections
Delivery method: Synchronous hybrid

SESSIONS 37 - 38 (LIVE IN-PERSON)
Layout and board composition
Delivery method: Synchronous hybrid

SESSIONS 39 - 40 (LIVE IN-PERSON)
Case Study presentation - Assignment C
Delivery method: Synchronous Online

BIBLIOGRAPHY
Compulsory

Recommended
- Mario Carpo. The Alphabet and the Algorithm. MIT Press. ISBN 9780262515801 (Printed)

EVALUATION CRITERIA

GRADING AND ATTENDANCE NOTES:
It is highly recommended that students who are in Madrid/Segovia attend the synchronous sessions on Campus. It is at the student’s discretion to attend classes on campus or remotely.

It is very important that students remain consistent in their decision of on campus or remote learning, so that the professor and students benefit from the possibility to plan activities in advance, knowing which students will be available in each type of session. Whether a student decides to follow their classes either on campus or remotely, they must commit to that mode, except for exceptional circumstances in which the change is for justified reasons.

28th September 2022
The behavior of the students during the sessions must comply with IE University's standards on education, respect for peers and professors, and commitment to joint learning. Students who connect remotely must keep their cameras on, and they must demonstrate the courtesy and online respect necessary in the digital environment.

- 1. Students have access to a total of four enrollments, in two consecutive academic years.
- 2. Students must attend at least 70% of all class sessions. Students who do not meet this minimum percentage automatically fail both first and second enrollments, and pass directly to the third enrollment.
- 3. Grading of students in the extraordinary enrollments will follow the following guidelines:
 - Students that have failed the subject in first enrollment pass to the second enrollment, except those who do not meet the minimum attendance percentage, and that therefore pass directly to the third enrollment.
- 4. The maximum grade that a student may achieve in second and fourth enrollments is an 8.

EVALUATION SYSTEMS:

- SE1: Attendance and active participation
- SE2 and SE4: Group and collaborative submissions
- SE3 and SE5: Individual submissions

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Percentage</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and active participation - SE1</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>Class Exercises - SE3 and SE5</td>
<td>10 %</td>
<td></td>
</tr>
<tr>
<td>Fora and group discussions - SE2 and SE4</td>
<td>10 %</td>
<td></td>
</tr>
<tr>
<td>Assignments - SE3 and SE5</td>
<td>25 %</td>
<td></td>
</tr>
<tr>
<td>Final assignment - SE3 and SE5</td>
<td>50 %</td>
<td>In order to pass the course it is a necessary requirement to achieve a grade of 5.0 or above in the final long-term assignment. Only then will the rest of the components be considered.</td>
</tr>
</tbody>
</table>

First Evaluation Call

Evaluation during the first call will be continuous: all the work completed by the student will be taken into account, along with his contributions to the class and forums. The evolution of the student’s technical and conceptual skills will also be taken into account. The result of this continuous evaluation will constitute the student’s grade. No global or final exam will be required during this period.

It is important to note that in order to pass the course it is a necessary requirement to achieve a grade of 5.0 or above in the final long-term assignment. Only then will the rest of the components be considered and averaged. If a student fails to achieve a grade of 5.0 or above in the final assignment, his/her final grade will be the same as his/her long-term assignment grade.

*Sobresaliente/Outstanding: 9.0-10.0 (A to A+)

Consistently produces work of the highest quality and craft; exhibits notable progress and development over the course of the semester; meets all course objectives at highest level; attendance is near-perfect, and contributions to course discussions are extremely valuable.
Notable: 7.0-8.9 (B to B+)
Completes all assignments with work of above-average quality and craft; exhibits significant progress and development; meets most course objectives; attendance and participation are very good.

Aprobado: 6.0-7.0 (C to C+)
Completes all assignments with work of acceptable quality and craft; exhibits some progress and development; meets a majority of course objectives. Attendance and participation are acceptable.

Aprobado: 5.0-6.0 (D)
Assignments are delivered but are incomplete and/or of low quality and craft; exhibits little progress and development; meets few course objectives. Attendance and participation are poor, but absences do not total more than 30%.

Suspenslo: 0-4.9 (F)
Work is incomplete, missing, or does not meet course objectives. Attendance and participation are poor.

Automatic Failure/Suspenso: 0 (F)
Please note that a student who misses 30% or more of the scheduled sessions receives an automatic 0.0, and loses his or her right to the Second Evaluation Call.

Second Evaluation Call - June/July
Students who fail to get a grade of 5.0 or above during the First Evaluation Call and whose class attendance meets the minimum requirement of 70% will concur to the Second Evaluation Call, consisting of a global test comprising all the contents of the course. Students who fail this exam, or the attendance criteria, will have to attend the Third Evaluation Call. The maximum grade for the Second Evaluation Call is 8.0.

Third Evaluation Call – (+1)
Students concurring to the third evaluation period are encouraged to follow the course again. They will have the same evaluation system as in the First Evaluation Call, completing all required coursework. Attendance is also required and only excused in the event of overlaps with other courses.

Fourth Evaluation Call – June/July (+1)
Students who find themselves in the 4th evaluation round will have to pass a global exam on the complete contents of the course. The maximum grade for the Fourth Evaluation Call is 8.0.

PROFESSOR BIO

Professor: **OSCAR HERRERO HERRANZ**
E-mail: oherrero@faculty.ie.edu

Óscar Herrero Herranz is an architect licensed from IE University (Segovia). He has developed both academic and professional career around complex geometry, scripting, visualization and interactive applications.

In the academic side he collaborates with several institutions, giving seminars and courses at IE University, Segovia (Architectural Geometry I & II as teacher assistant), ETSAM, UPM, Madrid (BIM Master, VR Visualization introduction) or IAAC, Institute for Advanced Architecture of Catalonia (Master in Advanced Computation for Architecture & Design, Digital tools for integrative Modelling Seminar)

28th September 2022
At the same time, Óscar is part of the Modelical team since 2015, where he has been involved in big and unique projects like 3D modelling and 2D representation of Nativity façade of Sagrada Familia (Barcelona), BIM modelling and solution development of Santiago Bernabeu Stadium (Madrid), BIM modelling of Kuwait International Airport. Among several VR and interactive experience like FC Barcelona Operations, Barcelona Council Protocol, Doha Port experience or National Museum of Qatar VR experience.

Email: oherrero@faculty.ie.edu

OTHER INFORMATION